On Banach spaces of universal disposition
نویسندگان
چکیده
We present: i) an example of a Banach space of universal disposition that is not separably injective; ii) an example of a Banach space of universal disposition with respect to finite dimensional polyhedral spaces with the Separable Complementation Property; iii) a new type of space of universal disposition nonisomorphic to the previous existing ones.
منابع مشابه
On Classes of Banach Spaces Admitting “small” Universal Spaces
We characterize those classes C of separable Banach spaces admitting a separable universal space Y (that is, a space Y containing, up to isomorphism, all members of C) which is not universal for all separable Banach spaces. The characterization is a byproduct of the fact, proved in the paper, that the class NU of non-universal separable Banach spaces is strongly bounded. This settles in the aff...
متن کاملOn some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کاملMalliavin Calculus and Decoupling Inequalities in Banach Spaces
We develop a theory of Malliavin calculus for Banach space valued random variables. Using radonifying operators instead of symmetric tensor products we extend the Wiener-Itô isometry to Banach spaces. In the white noise case we obtain two sided L-estimates for multiple stochastic integrals in arbitrary Banach spaces. It is shown that the Malliavin derivative is bounded on vector-valued Wiener-I...
متن کاملComplementably Universal Banach Spaces, Ii
The two main results are: A. If a Banach space X is complementably universal for all subspaces of c0 which have the bounded approximation property, then X∗ is non separable (and hence X does not embed into c0), B. There is no separable Banach space X such that every compact operator (between Banach spaces) factors through X. Theorem B solves a problem that dates from the 1970s.
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کامل